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ABSTRACT

e

The purpose of this report is to examine several Kalman

filter algorithms that can be used for state estimation with a

§
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, multiple sensor system. In a synchronous data collection system,
the statistically independent data blocks can be processed in paral-
lel or sequentially, or similar data can be compressed before
processing; in the linear case these three filter types are opti-

mum and their results are identical. 1In multilateration radar

tracking applications, the data compression method is shown to be

computationally most efficient, followed by the sequential process-

et i ek

ing, the parallel processing is least efficient. These algori-
thms are described in detail and their results ars compared with
a suboptimum tracking algorithm which processes only multiple
range measurements. A state estimate compression algorithm is
also described. Various radar measurement transformation formu-
las are listed. Algorithms for a nonsynchronous data collection

system are not examined in detail but possible approaches are

suggested.
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1. INTRODUCTION
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Recent studies (Ref. 1,2) have generated renewed interest

in multistatic and multilateral radar systems. These systems

O e

can improve target tracking accuracy using range measurements

-

T oy

from muitiplie radars rather than range and angle measurements
from a single radar. Preliminary simulated multi-radar estimates
(kRef. 3) have shown promising improvement when compared tn cor-

responding single radar results.

The purpose of this note is to formulate the Kalman filter
configurations that can be applied to multiple netted-radar mea-
suremen: systems; this report also addresses the general filtering
problem for measurement systems with many simultaneous measure-

ments. In Section 2 the problem is wescribed in more detail.

The two main tools for this report are reviewed; the extended
Kalman filter for nonsynchronously collected measurements from
different locations in Section 3 and the transformation of one
measurement system tc another in Section 4. In Section 5 the
results of Sections 3, 4 are combined and the filter configura-

tions for various mcasurcment systems are derived - some of their

o

advantages and disadvantages are discussed. Emphasis is on the

Wi

xamination of ie parallel filter - all measurements are pro-

ot @n‘m

ce sed simultaneously (parallel), the serjuential filter-process-

ing blocks of uncorrelated measurements sequentially, and data

compression~compressing the data before processing. Estimate

compression combines the filter outputs - comparable tu data
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compression. In Section 6 some numerical results are presented.

Four appendices are attached. They present radar measurement
transformation formulas, derivation of data and estimate compres-
sion equations, proof of filter equivalence, anrd computational
counts of various filter configurations.

2. PROBLEM STATEMENT

In the measurement system under consideration several ra-
ders at different locations make measurements of the same RV.

The accuracies of the individual radars are known, their sampling
times may or may not be synchronized or they may be ~andom. Fig-
ure 2.1 shows a schematic of such a measurement system; the mea-
surement vector of each individual sensor i is subscripted. The
individual radars may be active (i.e., transmit and receive) or
passive (receive only). A system is defined multilateral if all
radars are active, multistatic if there is one active and several
passive radars. Special cases under consideratinn are trilater-
ation (as in RMP-74) wi+h 3 active radars, or a bistatic measure-
ment systems with one active and several passive radars.

There does not exist an extensive literature for the multi-
rle measurement system as for the single observer. This report
describes and evaluates possible filter configurations. Particu-
lar emphasis is given to the multiple radar siting system in the
context of BMD for synchronized, non-synchronized, and random

measurement times. Some of the economics of implementing the

various filters will be discussed.
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Simplifying assumptions have been made including no wake
contamination, no association problem (occurring in a multiftarget
environment), no sidelobe problem, etc. These problems will have
to be solved before any such system can be successfully imple-

mented.

3. THE EXTENDED KALMAN FILTER FOR TARGET TRACKING

In this section the formulation of the extended Kalman
filter is reviewed. Both nonlinear and linear cases are outlined.
Consider the RV dynamics that can be described by the n-dimen-

sional vector nonlinear differential equation

x(t) = £(x(t)) + n(t) ; x(0) = Xq (3.1)
where n(t) is a zero-uean Gaussian white noise with covariance
Q(t) and X is Gaussian with mean X and covariance Po' The
measurements are collected (randomly) at discrete times in the
form

z(tk) = Zk = h(xk)+ vk : X, = x(tk) (3.2)

where Vi is an m~dimensional zero~mean Gaussian white noise se-
quence with covariance RK.
It is assumed that (3.1) has a unique solution and can be

expressed in the discrete form associated with (3.2)

)
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) o+ w k=1,2, ...

SR S L L k-1

where{wkjis an n-dimensional zero-mean Gaussian white noise

sequence with covariance Qk= Qk(t tk) and &t = t, -t

k+1° k-1 k k-1.
The exvended Kalman filter associated with (3.1) and (3.2)

is stated below:

PREDICT CYCLE:

(State) xk+1/k = fk(xk/k,atk) ; xo/o = X (3.3)
. ~ f tk+1
or xk+l/k = xk/k + tk f(x(t),71)dr (3. 3a}
. . T . -
(Covariance) Pk+l/k = Akpk/kAk + Qk ; Po/o = Po (3.4)

where xk/j denotes the estimate of x at time ty based upon all

the data up to time tj and Pk/j denotes the covariance of xk/j'

Ak is the Jacobian matrix of fk at xk/k and atk.

= of
Mo | (3.5)
X=Xy oy
UPDATE CYCLE:
(State) Xeel/kel = Frai/k o Fre1 Zre1” Pk ) (3l
(Gain) K, , =p HY _(H, , .P W', + R, ..)7t
k+1 = Pre1/kBk+1 Bra1Prar/kt k+1 ¥ Rial

(3.7)
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or Keel1 = Prar/k+1 Hxe1 Renl (3.7a)
(Covariance) pk+1/k+l = (I~ Kk+1 Hk+1)Pk+l/k (3.8}
or P = (p-t suT Lo 0™t (3sa
k+1l/k+1 k+1/k k+1 "k+l Tk+l *
if p~l exists
k+1l/k
where Hk+l is the Jacobian matrix of h at xk+l/k’
ah
H = & ~ (3&9)
k+1 ax x=x

| k+1l/k

If the measurements are linear with respect to Xy s then

Egs. (3.2) and (3.6) become

zk = Hk xk + vk (3.2%)

~ ~ A

Xeal/kel = ¥kelzk ¥ Frel i 7 Hean Fxeagk! (3.6%)

respectively.

4. TRANSFORMATION OF MEASUREMENTS

The need for a transformation of measurement arises, e.qg.,

when the filter coordinate system is different from the
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measurement coordinate system. This is the case in particular

when several radars at different locations make measurements of

the same object.

In Section 3 the nonlinear measurement was presented of the

form

g

2y = h(xk) + vy (4.1)

Here we are concerned with a radar measurement at a different

location of the form

*

z}’; = h* (xk) + vy (4.2)

where {vk*} is an m-dimensional zero-mean Gaussian white noise
sequence with covariance R*. To use Eq. (4.2} in a filter de-
signed for Eq. (4.l1) the measurement has to be transformed. As-~
suming that the measurement can be transformed into the form of

Eg. (4.1) - in the deterministic case - z), computes to:

*
2y = 9(zy)

(4.3) é
For the stochastic case, Eq. (4.3) can be approximated as !g
z, = g(zk) v h(xk) + Vi (4.4) =

where {vk} is an m-dimensional zero ne=san Gaussian white noise '

AT ity

seguence with covariance

R =G R GY 4.5
k = %k R Gk (4.5)
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5, = 5%
z * *
z =h (x
; N
éi and Xy /k-1 is generated as in the previous section Egq. (3.3) at
: tk'
i After making the transformation of Eq. (4.3) the filter
i
% of Eg. (3.2) can be used by correcting Rk as shown in Eq. (4.5).
% The H matrix is computed via Eq. (3.9) - as indicated in Section

3 - or in two steps as,

@
o

H=(32, |, . (4.7)

* ~
z z =h (xk/k—l) X = xk/k—l

|

Y]
"

It becomes clear, that the above transformation is independent

of the RV dynamics. 1In general, the approximation of Eq. (4.4)

it

. is satisfactory only if the nonlinearities are small,

i

Three basic measurement transformations are considered in

this report:

I) R, A

II) R, R_R

III) R, R, R
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Transformation I is used to convert the (R, A, E) data collected
from one radar site to another radar site or the origin. Trans-
formation II can be used to convert 3 range measurements from

three radars into RAE measurements - either to use the data for
existing RAE~filter inputs, or e.g., to evaluate the elevation

and azimuth accuracies of the Rl, RZ’ R3 measuremenrs as compared

to the R, A, E measurement of a single radar. Transformation III

]

is a combination of I and II. The transformation formula and the

associated G matrices (of Eg. (4.6) ) are derived in Appendix A

Aok e b npn s R SR e OIS, -
i o i e L e

for the three transformations.

5. FILTER ALGORITHMS FOR MULTIPLE SENSORS AND LOCATIONS

5.1 Introduction

In this section various Kalman filter algorithms for sen-

sors at multiple locations are presented. The major advantage

of such a multilaterated measurement system is the possibility

of obtaining more accurate data for the tracking filter. Using

the radar measurements from several different locations may re-

sult in a much smaller uncertainty volume. With the proper

geometry the angle measurements may become redundant - in the

-~ sense, that the processing of the angle measurements does not

improve the estimation accuracy by much. Neglecting them in

such cases results in a considerable saving in computer resources

while sacrificing little in filter performance. Because of the

redundancy in this type of measurement system it also is less

vulnerable against outages (forced or otherwise.)
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Various cases of data collection and filter configurations
will be considered. Both the synchronous (all sensors collect
data at the same time) and the nonsynchronous case (each sen-
sor works independently of the others) are evaluated. In multi-
lateration radar tracking system the collection could be either
synchronized or nonsynchronized. In a system of bistatic radars

only the data collection is necessarily synchronized.

The radars at different locations have different measure~
ment coordinate systems with respect to a fixed state (or state
estimate) coordinate system. The Kalman filter can be designed
to accommodate all measurement coordinate systems - or the mea-
surements must be transformed to fit a particular filter design
as discussed in Section 4. Both types of filter configurations

will be discussed.

In Section 5.2 three optimal (in the linear case) and one
suboptimal filter for the synchronous data collection case are
suggested and investigated; the nonsynchronous case is treated
in Section 5.3. Also described is the possibility of prepro-
cessing the data to reduce the computational reguirements. In
Section 5.4 the filter performance is evaluated when only a sub-
set of the data is orocessed and compared to the optimal case

for which all the data are processed.

10




1 5.2 S8ynchronously Collected Data

; Let zk+l,i denote the measurement taken at time tk+1 from
f i-th radar with a total of I radars, then
zk+l,i = hi(xk+l ) + vk+l,i ¥ i=1, ....., I (5.1)

PR e

ey

where {vk+l i} is a white Gaussian noise sequence with zero
14

mean and covariance Rk There ar= four options in process-

+1,1°

Lo

ing these measurements by a Kalman filter. They are discussed

individually below.

Wi R e e R e bR TN T 00

5.2.1 Parallel Filter

All measurment vectors may be used to form a new measure-

ment vector Zk+l.

“x+1,1

If each zk+l,i 1: an m=-vector, then Z 41 1S an M=nxI vector %

{(otherwise M = I mi). I1f the measurement noise for different :
i=1

WOUDILRNT RIS 50 i X & = & - o o w
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é radars are uncorrelated, the covariance of zk+l' Rk+1’ is
3 I
i R : 0 : : .: .: 0
- k+l,1, i L
=} eem—m——- L e an . v e o o [ U — —
i | | i
] 0 1 Ryyy, 2l }
& A boom————— b ~
i | : t
2 = . .3
g Rk+l —————— —: : : {5.3)
% . I 1 b
3 [ } i
e ] e + | I
. i i )
< B e (S o ————— -
| ; | |
} ! : k+1l,1I

AT i e

Using (5.2) and (5.3) in the filter update equation and after a

few manipulations, we obtain

~ ~ I

B e R G it

§ (state) feal /el = Fedzk D B, 1%k, 07 By B )
1 (5.4)
2 - T -1 g
| (Gain) Keps i Pre1/k+1 Px+1,i Rkel,i (5.5)

-1 -1 I -1

(Covariance) P = p + I (H R Hk+l i)
k+1/k+1 k+l/k i=l k+1,i K+1,i ’
(5.6)

where H is the Jacobian matrix of hi(xk+1) at xk+l/k'

k+l1,i
Notice that the inverse covariance matrix equation is used in
(5.6). This form is more convenient for discussing filter equiv-

alence. This algorithm is depicted in Figure 5.1.
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Px+1/k+l

Figure 5.1 Parallel filter.
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5.2.2

Sequential Filter
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(Gain)

ox

zero prediction time for i>1.

sequentially.

Xk+1/k+1

Xyx+1/k+1,0

Xpeal/k+1,1i

Each measurement may be treated as a new measurement with

The estimates may then be updated

The update algorithm becomes

~

= Xpg1/k T

(Zp1, 1" i a1/t i-1") (5.7)

~

= Xg1/k! = Prayk (548)

Prsl/k+1,0

~

= Xyy1/ke1,i-1 T Kk+1,d

(Za1,i ~ hi(xk+1/k+1’i,1)) (5.9)

_ T
Kiepl,i = Pkal/k+l,i-1 Tk+l,i
( : T -1
Hypy,iPre1/kel,i-10k+1,1 7 Ryes1,i)
_ T -1
Kipl,i = Prel/k+l, i kel i Nkel,d
i=1,2, .+., I {5.10)
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(Covariance)  Pryy kel i = Prei/kel,i-1 ” Fel,i v,
[

Plri/kel, oy (501D
-1 _ -1 T -1
or Prsr/k+1,i = Prel/k+1,i-1 7 Bke1,i Rkel,i Hkel,i
i=1,2, ..., I (5.11a)
x = x Prel/k+l = Tkel/k+l,T
k+1/k+1 k+l/k+1,I - ’

(5.12)

Notice that the i-th measurement is used to update the state
estimate at the i-th step. This algorithm is illustrated in
Figure 5.2.

5.2.3 Data Compression

All measurements may first be combined to form a pseudo-
measurement (data compression). 1In this cese, the filter only
needs to be updated once. If a weighted least square criterion
or a Bayesian estimation formulation is used, the combined

s ian re¥*
measurement 29 and covar ce Rk+l are

* For derivation, see Appendix B.
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Te+l/k

"Xk+1,0

S —y

Prs1/k

=Pr+1/Kk+1,0

zk+1,1

Filter

#1

————————————

2K+l

!

02

k+1l/k+1,1

Pre1/k+1. 1

Filter

$2

| TN-76-21 (5.2)]

241, 1

!

i 8 O & ow=iing

16

Filter
1

Figure 5.2 Sequential filter.
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a1 T Rier © 2 Rirl,s Zke,i ) (5.13)
I
-1 -1 (5.14)
R = ¥ R .
k+1 i=1 k+1l,1

:
z
%
i
=
2
§
53

In order to use (5.13) and (5.14) all measurement vectors have to

be transformed to a common coordinate system. The transformation
procedure is discussed in Section 4. Using the above results,
the update equations are unchanged as stated in (3.5), (3.6), and

(3.7). This algorithm is depicted in Figure 5.3.

5.2.4 Estimate Compression

Each radar may have its own filter and process its own
measurement. The resulting estimates are then combined (as out~-
lined in Appendix B). However, since the Pij (Pij = correlation
0f the estimates from the i~th and j~th filter) for i#j are
generally not available any compressed estimate is suboptimal and

no correct estimate of the covariance matrix exists. An algorithm

for estimate compression is illustrated in Fig. 5.4.

5.2.5 Algorithm Comparison

Four algorithms have been discussed above. In the case of
a linear system it can be shown (see Appendix C) that the result-

ing estimates of parallel filter, sequential filter, and data

Wby
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Figure 5.3 Data compression.
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compression arc identical, and optimal. In Table 5.1 a cost com-

*
parison is shown (in terms of multiplications per step). The

.estimate compression method reguires the most computations, it also

does not result in a least square estimate and is not optimal.

The data compression method is computationally more effi-
cient than all the others. Although it requires that all measure-
ments be transformed to a common coordinate, the filter needs
only to be updated once. The computation requirements between
parallel filter and sequential filter depend upon the dimension
of the state and the total number of measurements. Let n denote
the dimension of the state vector, m the dimension of the mea-
surement vector, and I the total number of measurements, it can
be seen from Appendix D that the sequential filter is more effi-
cient than the parallel filter.

The comparison of all algorithms is demonstrated in Table

5.1 for a particular example (n=7, m=9).

5.3 Randomly Collected Data

The filter prediction and update process is carried out
according to the availablility of new data set. Suppose at time
ey that the only available data is from radar i and let it be
denoted by Zp+l, i and Rk+1,i' the update is performed based upon

this available data.

The number of multiplications is derived in Appendix D.
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KRR A i

| (State) Xpal/k+1l = Fkel VO Kear, 1 CBrar, i 7 P g i)
(5.17)
; (Gain) K = P HT R_1
‘ k+1,1 k+1/k+1 "k+1,i “k+1,i (5.18)
. -1 a1 T -1
(Covariance)  Pyiy/ker = Pransk * Bien,i Reel,i Hger,i (5419

T e

i

If the filter is restricted to accept data only in a fixed
measurement coordinate system Zpsl,i and Rk+l,i must be first
transformed into that coordinate system. The resulting update
equations are the same as (3.5), (3.6), and (3.7). These two
cases are illustrated in Fig. 5.5.

The draw back of a nonsynchronous data collection system
is in its high computational requirements. This is caused by the
fact that the filter must be updated sequentially, and the data
compression scheme can not be applied.

Two alternatives exist. The first one is simply to insist
on a synchronous data collection system. This is possible if bi-
static radars are used or if sufficient communication exists be~
tween transmitters so that data can be collected synchronously.
The se-ond alternative is to preprocess the data for time align~

ment. A polynomial data smoother could be used as a data pro-

cessor for data-time-alignment, similar to the one discussed in

i

(Ref. 4).
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~

xk+l/k rilter with i-th xk+l/k+l
== Radar Measurement jre—————eg-
Pre1/k Equations Prel/k+1

Figure 5.5-a Filter equipped with all measurement equations for
randomly collected data.

~

rel/k Trel/zk

~

Transformation 2 x
Zr41.d From i-th k1 k+1/k+1
«———af Radar to the | g rilter .
Fixed Coordi-- p ¢
nate k+l/k+1

Figure 5.5~b Filter with a fixed measurement coordinate for
randomly collected data.
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5.4 Options of Processing all or Part of the Measurements

In a data collection system, part of the measurements may
be of poorer quality (low SNR) than the others. If the remaining
(high SNR) measurement still constitutes an observable system,
the noisy measurements may be neglected with trade-ocffs in compu-
tation and performance.

This situation is particularly true in a multilateration

tracking system. The range measurement accuracy is usually

better than that of the angle (crosswrange) measurement for a
single radar. Several radars looking from differsnt locations
may result in much improved uncertainty volume even if only range
measurements alone are used. When only range measurements are
processed in the filter, the computation requirements are reduced
over even the data compression method ~ which was the most effi-
cient filter in terms of computation., Two methods may be used
in applying multiple range measurements to a tracking filter.
(a) Range measurements from several measurement

locations (at least three) may be used to

form a set of pseudo-measurements (range and

angles) for a "virtual" radar. For proper

geometry the effective angle measurement

standard deviations can be considerably smaller

than those obtained in a conventional radar
3

system (of the order of 10~4 radian vs 10~

radian).
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The range measureménts may be directly

processed by the tracking filter without

going through the transformation illustrated

above. This method uses less computation than

the method described in (a). A filter which

accepts range and angles will have to be modi~

fied to accept sevé:al ranges simultaneously.

In the case of a linear system and measure-

ments, it can be shown that there is no

difference in performance in using either

method. 1In the case of a nonlinear system

such as the RV tracking system, it is expected

that both methods will achieve close performance.

It will be shown in the numerical results that with proper

geometry,processing range measurements alone can achieve virtually
the same performance as processing all the measurements.

6. NUMERICAL RESULTS

The parallel, sequential and data compression filters were
tested in a RV sinulation. The reentry geometry is shown in Fig.
6.1. The estimation results for these various nonlinear filters
are extremely close - for linear filters in other runs they were
shown to be equal. The statistics for the nonlinear filters are

identical.




TR ]

{49.5, 49.5, 40.)

Geom. I

(4.1, 4.1, O) 3t {km)

O—————6——Fr—

RADAR 1 RADAR 2 {49.5,0,40.)

(4.1, 45.4, 0)

(for all radars: go = I gp ®op = 1 mR})

Figure 6.1 Reentry geometries I, II,.




In Pigs. 6.2 - 6.5 the RMS position and velocity errors
are shown for 2 geometries for the following measurement configu-
rations:

Radar 1l: R,A.E

Radars 1,2,3:

Radars 1,2,3: (R,A,E}i ; i=1,2,3
At low altitudes (<20 km) geometry I has smaller RMS errors; at
higher altitudes (>20 km) geometry II seems favorable.

For the radar measurement accuracies used, the trilater-
ation results (3 radars-range only) are better than the typical

single radar results (by a factor 2-5). The trilateration results

for 3 radars (R,A,E)i; i=1,2,3 show only marginal improvements

when compared to the 3 radar - range only - results. It should
be pointed out that the improvement due to trilateration will be
much greater if the range accuracy is improved or if the angle

accuracy Of the single radar is reduced.
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Radars 1,2,3: Ry; i=1,2,3

Radars 1,2,3: (RAE)i: i=1,2,3

Altitude (km)

Figure 6.2 Position RMS error vs. altitude for geometry I.
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X Radar 1 : RAE ]
e el Radars 1,2,3: Ri: i=1,2,3 .
o radars 1,2,3: {EAE)i i=1,2,3

i { 1 H t [y - [ §
0 20 40

Altitude (km)

Figure 6.4 Velocity RMS error vs. altitude for geometry I.
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APPENDIX A
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The Three Basic Measurement Transformations

S A Qe

PR RN

(1) Transformation I: From (Rl,Al,El) to (RO,AO,EO)

O O it i i

Given (See Fiqure A.l):

Radar I at (xl,yl,O) measures (Rl,Al,El)

g SAOERREA NS o MW

Radar 0 at (0,0,0) measures (Ro’Ao,Eo)

m oM RORAreSe N b S Ay Y e N S

Transformation Formula:

%
2,22 . ,
[P]+x]+y]+2x R cOSE sinA, +2y R COSE; cosA, ]

R
o)

f

-1 %1 * RlcosElslnAl
o yl + RlcosElcosA
-1 R151nEl]

o} & RO

1

The Gk - Matrix:

(a) xyz ~ System

X,Y,2 - from the predicted state vector Xk /k-1

T e A A

T
AR

;1 [(xl—;c)2 + (yl-§>2 ];5
= [x¥®+?1%
[:2 4 321 %

= [? + Sk |

gilsses > ki g
H >
|

o>
]

DA A G
- v I
I

i




N S T T G gﬂ.‘w"

¢y = X3 (x=xy) + v,y (y-y,)
cy = X3 (y-yy) - ¥y e-x,) g
we have ?
911 = [Ryte1]/R Ry i
912 = /R ]
913 = - z¢y/R oy
_ A ~ I\2
931 = - Cp/Ryxg
a A2 ~ /\2
9y, = [ry*ey 171,
gy = zc /;' ;‘2 :
23 277170 H
z z ~ :
931=[“"‘ - 911]/”0 i
R, R
© |
- _ z - :
932 < 2 912/%

) .
YT e R

=lr _2Z_ /n
933 [rl 2 913]'%

pLli e

ot it

(b} RAE - System

~ ~ A ~
- i b
Ro'Ao’Eo from the predicted state vector §k/k-1 :
Fal -~ -~ f%
=
r = 5
o RocosEo ,
el ey ~ -
. 25
= i ¢
4 Ros nEo 5
= r i
b 4 051nAo
~ ~ A

= r Co
Yy o sAo

then apply the same formulas in (a) to obtain gk’
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(11) Transformation II: From (Rl'Rz’R3) to (Rl‘Al’El)

Given (see Figure A.2):
Radar I at (0,0,0) measures R1 or (Rl' Al’El)
Radar II at (x2,y2,0) measures R2
Radar III at (x3,y3,0) measures R3

Transformation Formula:

R, = R

1 1
A, = tan"l(g)
E, = sin ' ()
1
X = a1R§+a2R§+a3R§+ao
y = blR§+b2R§+b3R§+bo

%
z = {Ri - (x2+y2)]

_ _ . _ _ 2 .2
a; = ¢y [¥37¥,] ray= ~6o¥3r a3=Co¥yr 25=Co(¥3T5~Yo 3y

= HEVGROY, = = - - 2 .2
by = ¢, LX, A3] b,= C Xq, by= =C X,/ bo_co(xzr3 x3r2)

1 _ . 22,2 2_ .22
S = //[2‘x2Y3 X3¥p)J 4 TRty T3 T X3tYy

The gk Matrix:

(a) xyz - system

X,¥2 from the predicted state vector kk/k_l

o =[5+ 370
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- [32 4 32]
(o}

o>
il

2 [(;{«xz)2 + (§-—y2)2 + ;2];5

~ 2 o 2 . "21%
3 [(x—x3) + (y-y3) + z ]

3 >
i

we have

1oy =00 9y3=0

~

_ ~ ~ _ 1\2
991 = 2R1(a1y blx)/ro

£
4
2
E
t
i
§
&
£
E]
k)
g
E
2
i

_ ~ A_ "~ 1\2
9yy = 2R2(a2y bzx)/rO

- Fal ~ _ g A2

93 = 2R3(a3y b3x)/ro
Rl A ;
gqq = == (l-2a,x-2b,y) - —=
31 r 2 1 1 R.T

o) 170

(R ',;n‘,'v_x g \‘.}Tu.’:‘ g
[ 3]
v b

9y, = - [azx + bzy]

roz

)§ ZE ~ ~

4 gyq = = x= |asx + byy ]
3 33 z 2 | 3 3

b) RAE -~ System

Ry,A;,E) ~ from the predicted vector Xy /-1

A ~

ro = Rlcosﬂl
zZ = R151nEl
X = r051nAl
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~ A ~
= r_COSA
Y o” 1

then apply the same formulas in (a) to obtain G

(II1) Transformation III: From (R ,R.,R,} to

2'73

(

k°

Ro'Ao'Eo)

Given (see Figure A.3):

Radar 0 at (0,0,0) measures (RO,AO,EO)

Radar I at (xl,yl,O) measures Rl

Radar II at (x 0) measures R

21Y 0 2

Radar I1I at (x3,y3,0) measures R3

Transformation Formula:
Co [¥37¥y ]r 357
1 = € [¥7%3 ]/ by=c, [%3-%; ] by=

2
o = S Llyymypirc; -

o
If

o
il

2
(yz—yl)r3] '
_ 2 2
b, = ¢ Lxyx)ry = (xg=xpry ],

_1r.. ~ _
c, =3 [,xz xl)(y3 yl) (x

2 _ _ 2 _ 2 2 _ _
ry= (Rymx )7+ (yy=yg) ™, ry = (x3-%5)
I S O S %
RO = Rl—~x1~yl xxl+2yyl
-1 x
A =+t -
an v
N
E = gin —
0 Ro
2

_ 2 2
X = alPl+a R +a3R3+aO+x1

¢y [Y37¥y ] 125

2

-1

3“x1)(yz‘yl)]

+ (y3-yy)

) [y2~yl] '

—co[ X,=%; ],

2
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y = b R2+b Ro+b Ra+b_+y,

zZ = [Rz—xz-—y2 ]k
The gk Matrix: :
(a) xyz - system ?

x,v,2 - from the predicted state vector xk/k 1

. ek
o Yy

~ -(I\ ~ ;5
R = r2+22 ]
8] L (]
~ r A 2 ~ 2 A2- J‘
Ry =1 (x=%7) 7 + (y-y,) z
L. o
~ _ [* A 2 ~ 2 "2‘ ;5
R, = (x—xz) + (y-yz) + 2z
Ry = L(x-—x3) + (y-—y3) + z |
we have
9,7 = Ry [l+2alxl+2blyl] /R,
913 = 2R3 [a3x1+b3yl] /R 3
9, = 2R [aly—blx] /x5 7
g.. = 28 [ag-b.x | /2 ”
22 2 2 2 o

T S8, ket 00Nt
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Target
(X,Y,Z)

(0,0,0)
RADAR 0

(x,v.0)

RADAR I (xlfyl,O)

Figure A.l1 Measurement transformation I.
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* Target
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(0.0,0)
TADAR I

< (X5,¥5,0)
1 RADAR II

(x v, 0

(X4:v. 0)

3= 3

2
E
=
2

RADAR TTI

Figure A.2 Measurement transformation II.
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Target
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g 2
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(xl%yl.O)
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RADAR 1
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Figure A.3 Measurement transformation III.
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APPENDIX B

Derivation of Data and Estimate Compression Equations

N .
Let X; denote the measurement (or estimate) of x from the
i-th sensor (estimator) with mean x and covariance P;i- In addi-

FAY

N, .
tion, it is assumed that the correlation between X, and x._, Pijr

is known and X;+ i=l,...,N and x are all expressed in the same

coordinate, then

i (B.1)

\
A weighted least square estimate of X from §i,i=l,...,N is the x

which minimizes

"
(x - Hx) (B.2)

where P = |p

N1 N2 NN
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I= an identity matrix with the same order as X. The

solution is

T =1 o\~ -
(" P H) 1 _ covariance of x (B.4)

1f the order of x is n, then the dimension of P is (nNxnN). The

above equations require the inverse of a large size matrix. For
the case when ?ij =

fied to

= 0 ¥ i#j, the above equations may be simpli-

i
=
=
£
d
ki




e A el

~ N -1\~1 N -1
§=( I Py ) D S (B.5)
i=1l 1=1
NooS1\-1 ~
% Pii) = covariance of x (B.6)
i=]1

Notice that in this case the matrices to be inverted have dimen-
sion (nxn).

In the data compression case, the measurements are uncorre-
lated. Equations (B.5) and (B.6) are used for this purpose. For
the estimate compression case, the estimates are correlated. 1In

order to optimally use estimate compression, one has to

(a) Compute all correlations, Pij Vi=j

(b) Invert a large matrix, P.

Both are optimum, however the estimate compression is computation-

ally extremely inefficient.
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APPENDIX C

Proof of Filter Equivalence

In this Appendix, the equivalence of sequential filter,
parallel filter, and the filter using compressed data are shown.
It should be noted that they are equivalent only in the linear
case. The resul*s for nonlinear systems such as RV tracking
should still be close to optimal. The prediction equations of
the three filters arxre the same. Only the equality of the update
equations need to be proven. The equations of the parallel fil-
ter will be used as the reference. All the other filters will
be .hown to be the same as the parallel filter. For convenience,

the update equations of the parallel filter are restated below.

~ ral I
(State) Eeel/kel T Belzk D Ben,i e T
Hieer, 1 Be1/k)
(C.1)
(Gain) K =P yY RL
k+1,i = FPrel/kel Pxa1,i Bral,i (C.2)
(Covariance) P_ > = poL + ; HY rL H
ANCET Tkal/kel T Tkel/k T UL Tkel,i wl,i k4D, d
(C.3)

The proofs are stated individually.

Fillpahifi, %2 i




(a} The equivalence of the sequential filter.

The covariance matrices can be easily shown to be the same.

Iterating (5.1la) I times yields

-1 -1
Pk+1/k+1,1 - . k+1,1 Rk+1,i Hk+1,i

P—l - P—l
k+1/k+1,1I k+1/k+1

This is the same as (C.3). Next we show the state estimate equa-
tion. Substituting (5.8) and (5.9) to (5.7) and after a few

manipulations , we obtain

A~ ~ I"l I

x = x - 3 a (I -K H ) K :
BRAL/el T Berlzk g LTS T kL3 kel 3 Tkl d

~

(Zpe1,i 7 Bge1,i Bxel/k)

A

* R, 1%, T 7 Hea, 1 Xke1/x! (C.5)

where I = an identity matrix, and K is the gain defined by

k+l,i
(5.10), not (C.2). The are equal when i=I. Using the following

relation of the sequential filter,

(1

Prat/kel,isl = T 7 Keonie1 Bren,ien) Prelskel, i (C.6)

S

okl

G S D D




3 S - .
] 1
then, £
: :
f . ;
£
i T (I - K . H .) K . ;
. jeitl k+1,73 k+1,3 k+l,1i ;
I b
= T (- Ky 5 B, @7 K ie B, aen! |
j=i+2 ;
T -1 :
Prel/k+l,i Pkel,i Rkel,i
= . (I - K H ) P HY g1
j=it2 k+1,3 "k+l,3 k+1/k+1,i+1 "k+l1l,i k+1,i

T -1
Pre1/k+1,1 Hke1,i Rkel,i

T -1
Pret/k+l Hke1,i Riel,i

QL 00 U i T i A e A N e M i

Kk+l,i of (2.2)
This completes the proof.
(b} The equivalence of the filter using compressed data.

In order to use the data compression method, all measure-

e

ments must be first transformed to a common coordinate, i.e.,

they must have the same measurement matrix. Let the measurement




2
&
-
=
E
Z2
[

of the i~-th sensor be denoted by 2

the transformation by

~k+1,1i’
Ti , and the transformed measurement by 3k+1,i' then
! 1
Zx+1,i - TiZk+l,i
= T3 Brar,i kel T Tifka1,i (€.7)
and
Ti Hk+l,i = Hk+l for ail i=1, ..., I.

It should be noted that the transformation Ti may not exist for
all i. They do exist however for the multistatic radar applica-

tion discussed in this report. The covariance of Neeli is
7
T

. ' - ™
Rk+l,i and that of T Myy1,i 1S Rk+1,i T, Rk+l,i T, - The
compressed covariance is denoted by
N I
Riyp = I Rkil i
i=1 !
I
-T -1 -1
= ¢ Ti Ri,i Ty (c-8)
i=1

Applying the above results to the filter covariance equations

yields

49

[T N N

b

it OB o

i

i i




|

. "

% Pesr/irl = Proisk * Bt Rran P

2

g I

% = P;il/k ¥ iil H§+1 TET R;il,i TIl vl
i = Pl t 2 Hen,s Rerl,i el i

This proves that the covariance propagates the same way. Next

we show the state estimate. Let z, , denote the compressed data,

then

n,
~ . T Vo1 ) ~
Xpt1/k+1 = Xxal/k T Pre1/kel Bl Rrar Zxar T oBgen Fgerx)

~ n

T -1 -1
Xpeal/k '

I

1
el el T B B B0 Rl Zxe s

~

k+1 Xk+1/k’

~ T 1 -1
= X, + P H (% R'
2x+1/k kt1/k+l Tkl T2 T4 Z'x+1, 1
I

-1 ~
- '
Eo Bl s Beel Erenx)

- - T v"'l ' - >
Xert/i * 2 Pkl Boen Brel, i Cken,n 7 B Bk
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e di i R TNERY gl
S R SRR RS, e AT R~ T

1
- = T T -T -1 -1 4
= Gerizk 0 Peri/kel Pren,i T Ti Rren,i T ]
T3 Zpe1,s ~ T3 Bre1, i Fel/k! f
1
= £k+l/k o Pral/kel By, Rrl, s ( %
i=1 ot r 21,4 :
Hie1,1 Exe1/k! ;
This completes the proof.
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APPENDIX D

e

Computational Efficiency of Various
Kalman Filter Configurations

The computational requirements of an algorithm can be esti-

T oo T R A

mated by the number of multiplications per cycle. One cycle of :
a Kalman filter can be divided into predict part (subscript p)
and update part (subscript u). Using the standard formula the

number of multiplications M is computed, assuming that the compo-

nents of the measurement are independent and taking advantage of

v Rt v A OGN RATI G e s e p 2 Y

E the symmetric matrices i.e., only the upper triangular matrix has é
% to be computed. %
i D.1 Predict Part %
;} P = ara” + Q E
: A,P nxn é
7 Product # of multiplications §
3 PAT n3 %
x = Ax a(paT) 5 n? (ntl) ‘
* ;nxl A; n2
Mp = % n2(n+l)

T

%
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D.2 Update Part

i
H
ES
%
i
2
:

Y a, -
. K = pHT (upHT + R) T
i
Hoxn' Pnxn’ Rrxm
b Product # of mult.
v}
PHT nm
N
s T
H(PH™) %(nm2+ nin)
a -1
( )mxm % (m™ - m)
voT -1 2
(PH )nxm( )mxm nm
47 n
—_ - n
P =P K (HP) K (HP) %(nzm + nm)
~ ’~ ~
z = Hx Hx nm
A K(z ~ 2) nm
K(z - 2z)

_ 3 2, 3
Mu- nm §(n+m)+3 + -3—(m m)
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D.2.1 Update via Inverse

3

nxn

n,

(P

-1

H

+ BIR 1m)

mxn m

1

R = Diag.{ri}

Product

$ of multiplications

T R g

n

[ Ean

% (n

oW

2nm

(n

2 3
m+-2~nm

-n)

~-n)

D.3 Data Compression

given:

k m-dim,

1) transform z; to z

data sets zi

M =nm (=

u,lI

i=1,

LECIE A

7
n+'2—)+

(n”=-n)

w[ -

k

o~ coordinate system

2) transform diagnoal covariance matrices Ri

3) compress
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i Product $ of mult.
_ 2
: ) oz; =Gy 25 k m
% T 1 3 2
% 2) Ri =G Ri GJ k 5 (m~+ 3m )
:
|
%
. 3) (&)t (k+1) 2 (m3- m)
E 1 3
3
= =1, -1 = -1 — 2
4) (EZRi ) (XRi zi) (kt1l)m

3,7

_ 2 2
MD-m(-6-k+-§)+m

7 2
(7 k+1l) - mg(k+1)

D.4 Estimate Compression

given:

k n - dim. estimates x., i= l,...,k

using only the P, matrlceé (the Py j#1i matrices
are not avallable} the # of multlpllcatlons for
the compressed estimate is computed.

Product # of results
P.Tl (k+1) %(n3-n)
ii
-1,~1 -1~ 2
(ZPii ) (ZPii xi) (k+1)n

_ 2,2
ME = (k+1l)n §(n -1) +n
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